a2 United States Patent

Kruglick

US009311153B2

US 9,311,153 B2
Apr. 12,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

(58)

CORE AFFINITY BITMASK TRANSLATION

Applicant: EMPIRE TECHNOLOGY
DEVELOPMENT LLC, Wilmington
(DE)

Inventor: Ezekiel Kruglick, Poway, CA (US)

Assignee: Empire Technology Development LL.C,
Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 130 days.

Appl. No.: 14/124,569

PCT Filed: May 15, 2013

PCT No.:

§371 (o)D),
(2) Date:

PCT/US2013/041196

Dec. 6, 2013

PCT Pub. No.: WO02014/185906
PCT Pub. Date: Nov. 20, 2014

Prior Publication Data

US 2014/0344550 A1 Now. 20, 2014

Int. Cl1.

GO6F 9/46 (2006.01)

GO6F 9/50 (2006.01)

U.S. CL

CPC ... GO6F 9/5044 (2013.01); GOGF 2209/502

(2013.01)

Field of Classification Search
None
See application file for complete search history.

-y

02

(56) References Cited

U.S. PATENT DOCUMENTS

7/1980 Marsh et al.
4/1990 Persoon et al.

(Continued)

4,210,962 A
4,916,659 A

FOREIGN PATENT DOCUMENTS

EP 1736851 A2 12/2006
JP HO08315598 A 11/1996

(Continued)
OTHER PUBLICATIONS

“Can I programmatically pick and choose which core of a multi-core
CPU my thread should run on?,” Stackoverflow, accessed at http://
stackoverflow.com/questions/1854709/can-i-programmatically-
pick-and-choose-which-core-of-a-multi-core-cpu-my-thread,
downloaded on Feb. 10, 2014, 2 pages.

(Continued)

Primary Examiner — Emerson Puente

Assistant Examiner — Mehran Kamran

(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steven S. Rubin, Esq.

(57) ABSTRACT

Technologies are generally described for systems, methods,
and devices related to core affinity bitmask translation. An
example system may include first, second, third and fourth
cores, and a dispatcher. The dispatcher may be configured to
receive a first request where the first request include a core
affinity bitmask and instructions. The core affinity bitmask
can identify at least the first core and the second core. The
dispatcher may be configured to determine a first affinity
between the first core and the second core. The dispatcher
may then identify the third core and the fourth core as having
similar affinity to achieve a substantially similar perfor-
mance. The dispatcher may also be configured to generate a
second request that includes a translated core affinity bit-
mask. The translated core affinity bitmask may be effective to
identify the third core and the fourth core as appropriate cores
to execute the instructions.

19 Claims, 9 Drawing Sheets

104

N
o

Source | 151
y.4 of initial
request

150

~

136 /
128/

130 /
/instriéibns;] : j30
/o Translated | J/ Instractions; |
§ core aiinity Dispatcher [Coreaffinity |
\;._\ bitmask | N bitmask |

| 132
126 5

US 9,311,153 B2
Page 2

(56)

5,349,656
5,745,778
5,806,059
5,826,079
6,289,369
6,567,806
6,658,448
6,745,336
6,769,017
6,782,410
7,093,258
7,143,412
7,146,607
7,275,249
7,363,523
7,383,396
7,389,506
7,437,581
7,574,567
7,802,073
8,051,418
8,078,832
8,108,843
8,181,169
8,214,817
8,443,341
2003/0018691
2003/0088608
2003/0171907
2003/0236919
2004/0181730
2005/0154861
2005/0210472
2005/0246461
2006/0041599
2006/0212677
2006/0225074
2006/0259800
2006/0265555
2006/0293318
2007/0027972
2007/0044084
2007/0079308
2007/0124457
2007/0226752
2008/0046895
2008/0126751
2008/0178183
2008/0181283
2008/0229127
2009/0031317
2009/0031318
2009/0070553
2009/0077562
2009/0125894
2009/0126006
2009/0187915
2009/0249094
2009/0320031
2010/0017804
2010/0037222
2010/0122101
2010/0191854
2010/0211735
2010/0225496
2011/0004692
2011/0088021
2011/0088022
2011/0088038
2011/0088041
2011/0093733
2011/0161608
2011/0302585

References Cited

U.S. PATENT DOCUMENTS

A
A
A
A
Bl
Bl
Bl
Bl
Bl
Bl
BL*
B2
B2
BL*
B2
B2
BL*
B2
B2
BL*
Bl
Bl
B2
B2
B2
B2
Al*
Al
Al
Al
Al
Al
Al
Al

*

2
*

Al*

2
*

Al

9/1994
4/1998
9/1998
10/1998
9/2001
5/2003
12/2003
6/2004
7/2004
8/2004
8/2006
11/2006
12/2006
9/2007
4/2008
6/2008
6/2008
10/2008
8/2009
9/2010
11/2011
12/2011
1/2012
5/2012
7/2012
5/2013
1/2003
5/2003
9/2003
12/2003
9/2004
7/2005
9/2005
11/2005
2/2006
9/2006
10/2006
11/2006
11/2006
12/2006
2/2007
2/2007
4/2007
5/2007
9/2007
2/2008
5/2008
7/2008
7/2008
9/2008
1/2009
1/2009
3/2009
3/2009
5/2009
5/2009
7/2009
10/2009
12/2009
1/2010
2/2010
5/2010
7/2010
8/2010
9/2010
1/2011
4/2011
4/2011
4/2011
4/2011
4/2011
6/2011
12/2011

Kaneko et al.
Alfieri
Tsuchida et al.
Boland et al.
Sundaresan
Tsuchida et al.
Stefaniak et al.
Martonosi et al.
Bhat et al.
Bhagat et al.
Miller et al.
Koenen
Nair et al.
Miller et al.
Kurts et al.
Wyman
Miller et al.

Grochowvski et al.

Wyman

Cheng et al.

Dice
Agarwal et al.
Nair et al.
Nakaike et al.
Mendelson et al.
Berget al.

Bono

McDonald

Gal-On et al.
Johnson et al.
Monfared et al.
Arimilli et al.
Accapadi et al.
Accapadi et al.
Tsuchida et al.

Fossumcc.......

Vaid et al.
Maejima

Davisetal.

Frei et al.
Agrawal et al.
Wang et al.
Chiaramonte et al.
May et al.

Davis et al.
Dillenberger et al.
Mizrachi et al.
Accapadi et al.
Elhanati et al.
Felter et al.
Gopalan et al.
Gopalan et al.
Wallach et al.

Sen et al.

Nair et al.

Zhang et al.
Chew et al.

Marshall et al.
Song ..vviiiiinn

Gupta et al.
Tatsubori et al.
Naffziger et al.
Isci et al.

Sasakawa et al.

Hou et al.
Occhino et al.
Kruglick
Kruglick

Kruglickccccveee

Alameldeen et al.
Kruglick
Bellows et al.
Dice

...... 718/105

...... 718/105

.......... 718/1

........ 712/10

..... 709/106
...... 709/106

...... 711/147

...... 713/320
...... 718/102

...... 711/114

...... 718/104

...... 711/162

2012/0266179 Al* 10/2012 Osbornetal. 718/105
2013/0017854 Al* 1/2013 Khawer ... 455/522
2013/0103927 Al* 42013 Berryetal. ..o 712/30

FOREIGN PATENT DOCUMENTS

JP 2005085164 A 3/2005

JP 2006318380 A 11/2006

JP 2008543912 A 5/2008

JP 2008306522 A 12/2008
OTHER PUBLICATIONS

“Every Programmer Should Know These Latency Numbers,” Dzone,
accessed at http://web.archive.org/web/20130413014655/http://ar-
chitects.dzone.com/articles/every-programmer-should-know, down-
loaded Feb. 10, 2014, 4 pages.

Intel Xeon Processor 7500 series Uncore Programming Guide, Intel,
Reference No. 323535-001, Mar. 2010, Intel corporation, 146 pages.
“Take charge of processor affinity,” IBM, asccessed at http://web.
archive.org/web/20130119115223/http://www.ibm.com/
developerworks/linux/library/I-affinity/index html, Sep. 29, 2005, 9
pages.

“What’s New in VMware vSphere 5.1?,” VMware, Inc., Feb. 2013, 2
pages.

DG and EB., “Job to core binding,” accessed at accessed at http://arc.
liv.ac.uk/repos/hg/sge/doc/devel/tfe/job2core_binding spec.txt,
downloaded on Feb. 10, 2014, pp. 1-17.

Gilge, M., “IBM System Blue Gene Solution Blue Gene/Q Applica-
tion Development,” IBM, Jun. 12, 2013, 2 pages.

International Search Report with Written Opinion for International
Application No. PCT/US2013/041196 mailed on Oct. 8, 2013, 26
pages.

“P6T New Era for Ultimate Performance! Intel® Core™ i7 Plat-
form,” accessed at http://www.asus.com/Motherboards/Intel
Socket_ 1366/P6T/, accessed on Sep. 24, 2015, pp. 4.

Albonesi, D.H, “Selective Cache Ways: On-Demand Cache
Resource Allocation,” Proceedings of the International Symposium
on Microarchitecture, pp. 248-259 (Nov. 16-19, 1999).

Bala, V., et al., “Dynamo: A Transparent Dynamic Optimization
System,” Proceedings of Programming Language Design and Imple-
mentation, vol. 35, Issue 5, pp. 1-12 (May 2000).

Baraz, L., et al., “IA_ 32 Execution Layer: A Two-Phase Dynamic
Translator Designed toSupport IA-32 Application on Itanium®
-based Systems,” Proceedings of the 36th International Symposium
on Microarchitecture, pp. 1-11 (May 2003).

Brooks, D and Martonosi, M., “Dynamic Thermal Management for
High-Performance Microprocessors” Proceedings of the 7th Interna-
tional Symposium on High Performance Computer Architecture, pp.
171-182 (Jan. 19-24, 2001).

Dehnert, J.C., et al., “The Transmeta Code Morphing™ Software:
Using Speculation,Recovery, and Adaptive Retranslation to Address
Real-Life Challenges,” Proceedings of the InternationalSymposium
on Code Generation and Optimization: Feedback-directed and
Runtime, vol. 37, pp. 15-24 (Mar. 27-29, 2003).

Donald J., and Martonosi, M., “Techniques for Multicore Thermal
Management: Classification and New Exploration” Proceedings of
the 33rd Annual International Symposium on Computer Architec-
ture, pp. 78-88 (2006).

Ebcioglu, K., etal., “DAISY: Dynamic Compilation for 100% Archi-
tectural Compatibility,” Proceedings of the 24th International Sym-
posium on Computer Architecture, vol. 25, Issue 2, pp. 26-37 (May
1997).

Flich, T et al., “On the Potential of Noc¢ Virtualization for Multicore
Chips,” Scalable Computing: Practice and Experience, vol. 9, No. 3,
pp. 165-177 (2008).

“HC23-S1: ManyCore,” accessed at http://www.youtube.com/
watchv=272nWq8UKS5A&feature=player_ detailpage#t=4674s,
Apr. 2, 2012, pp. 2.

International Search Report dated Feb. 3, 2011 in International Appli-
cation No.PCT/US2010/053110, 3 pages.

US 9,311,153 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Kang, D-I., et al., “Preliminary Study toward Intelligent Run-time
Resource Management Techniques for Large Multi-Core Architec-
tures,” pp. 1-2 (2007).

“Microsoft. Net Framework,” accessed at http://web.archive.org/
web/201312050813 1 8/http://www.microsoft.com/net accessed on
Sep. 24, 2015, p. 2.

Shirako, J et al., “Compiler Control Power Saving Scheme for Multi
Core Processors,” In Lecture Notes in Computer Science: Languages
and Compilers for Parallel Computing, vol. 4339, Springer-Verlag,
pp. 362-376 (2007).

Simon, CS 267: Applications of Parallel Computers Lecture 17:
Parallel Sparse Matrix-Vector Multiplication; pp. 66; Oct. 22, 2002.

http:/www.cs.berkeley.edu/-strive/cs267, available at http://www.
powershow.com/view1/1f4d37-ZDc1ZCS__267__Applications__

of Parallel_Computers_ Lecture_ 17_ Parallel Sparse
MatrixVector_ Multiplication__powerpoint_ ppt__presentation.
Song, F., et al, “Feedback-Directed Thread Scheduling with Memory
Considerations,” Proceedings of the 16th International Symposium
on High Performance Distributed Computing, pp. 97-106 (Jun.
25-29,2007).

Song, F., et al., “Analytical Modeling and Optimization for Affinity
Based Tread Scheduling on Multicore Systems”, IEEE International
conference on cluster computing and workshops, pp. 1-10 (Aug.
31-Sep. 4, 2009).

* cited by examiner

US 9,311,153 B2

Sheet 1 of 9

Apr. 12,2016

U.S. Patent

cel

JSeuniq

AlUle 210D
__“suopnasu

0cl

vel

Jayoledsiq

A
LGl

1senbal
feniut Jjo
90IN0g

| "B

ocl

/ Sseunq
Ajiuie 8102

psje|suei]
‘suononnsuy|

8l

ol

(44

14

¢l

O
O

Atowisw

10
I

O O

0Ll

80

0zl

O

901

O

¥0

c0

.

US 9,311,153 B2

Sheet 2 of 9

Apr. 12,2016

U.S. Patent

1eoifbo

8Ll 9Ll ¥#l1L Zl1 QL1 80L 90l

ey

70l

1od I0OMIaN 811 011 gvc 8LL 9Ll PLL ZLL Ol 80 oovamv@r oV
174 jeaisAugd
ANV ‘8TT OTI Iseunia
d3yoed | 8YTBIT [— T T T 3198 -
01T ‘80T uoljeoyisse|o vz
WYY | ‘90T YOI _ “JLAwuye ai0p
ayoed | 8TT ‘91T - /\ Tz \
syed | vIT CIT - \ \
ayed | 011'80L | - zel // yAY4 @N/_\/ N
aped | 901401 N SSewg /
$910D qsewng e N
Augy | Jo sdnouo Auye si0p) DojBiSUBLL)

LGl

‘suononnsu] [/

o€t / /

4

vl 114}

7
7
7

/ 061
1sonbal ¥ 9cl

jeniut jo
80in0g

4

4

/

‘sugnonaisyl /

/
~ \ 0gl \

US 9,311,153 B2

Sheet 3 of 9

Apr. 12,2016

U.S. Patent

¢ ‘b4

1eoibo

8l 9Ll ¥il 211 011 80l 90l

v0l

ninulslninhJuln
sodmomen | st orr 1|87 gLl 9ll Zill 0Ll go1 ooramv@r ove
8yt jeoisAud sewl
VY | ‘8TT ‘91T I i s
ayoe)n gyI 8T |~ — T — — TR P
0TT ‘80T UOJ}BOYISSE(D ove
Wvy | ‘90T ‘vOT _ L Anuye 100
aye) | 8IT 9TT - - Tz /
ayed | ¢TI \N: > /) 9zl N
ape) | 0TT'80T cel| / A\
7 | \
3yey | g0Tvol Y yeeuyg
59400 b_w_mtmw_mvo Auyge 8109
AUy | josdnoio U.E.m_m:E._. /
mco_wo:bwc_\ ; Susienncyl \\
oel / 8gE /
L 0L | /
N o¢l /
1sonbay 051
eyl jo
1Sl | eoinog

8Ll H

ol

Aowsw

i0
%

(44

142

cl

O O

O

oLl

80
Aiowaw

oclL

O

901

O

<
(e

2ol

o

US 9,311,153 B2

Sheet 4 of 9

Apr. 12,2016

U.S. Patent

81l 9l ¥il 2)1 01l 80} 901 ¥O}

e

[]

/.

|eotbo

ﬁm g11 9rL PLL 2L OFr mor 901 +0L| 9¥Z
dew
- T @ \O
llllll 31ae] s 8Ll
B M 8ve oL
80T 7 = .
105590014 7 0S¥y 9zl \
AL ‘INVYH XX 0T zeL| N\ /€2 \ 9Ll go0f
10553901 \ / \ _ Aiowew _ _\aoEwE _
A INVY XX 0T yseung seunq 7zl oet
Ayadoig 210D A 8109 / Anuye a10d)
‘stoRoNIsy| \\) MMMMMMMM_L_ /
oel ; / : \ il /
vl 71 \ 4 201
\ S ogL |/
\\
1sonbai V' 9¢l AN}
~ leniui jo
LSl | soinog ol

coL

-

US 9,311,153 B2

Sheet 5 of 9

Apr. 12,2016

U.S. Patent

8Ll 9Ll vl 2Ll oLl 8

|eaibon

O

L 90l P0OL

grz 8LL 911 PLL 211 OLL g0l 90L #0L| 9¥¢

dew
1eorsAud ysewyg
llllll 1
e|qe
Apedoud 2&\
7 8100
80T s \
105522014 P \ 0S¥ //
AA ‘NIVY XX 0t~ zgy| N\ P 9t \
105582014 \ / " /
v N
AA “INVY XX 0T Seonng >ummwwm8 \
Aysedoud 940D Aiuiie 8109 m.wu%_mcmﬁ v
mcoaon:w:_\ ,wcozo?;w:_\\
ocl \\ gse /
veL /S 8zl ocl | /
N 9cl /
18enbal 0s1 /
[eniut jo
LGl | soinog

O
% O

8l

9l
Alowsw

iO

(44

14

cl

O O

ol

80

Aowsw

;4

O

901

O

<
o
—

c0

—

o

U.S. Patent Apr. 12,2016 Sheet 6 of 9 US 9,311,153 B2

S2
Recetve a first request, where the first request may include a core affinity bitmask that
identifies at least a first core and a second core of the multicore processor
\4
S4
Determine a first atfinity between the first core and the second core
S6

Based at least in part on the first affinity, identify a third core and a fourth core of the
multicore processor

'

S8 Generate a second request that includes the translated core affinity bitmask, where the
translated core affinity bitmask identifies the third core and the fourth core

Fig. A

U.S. Patent Apr. 12,2016 Sheet 7 of 9 US 9,311,153 B2

S20 .
Receive a first request to execute a first task on a first core and a second task on a second
core, the first request may include a core affinity bitmask that identifies at least the first core
and the second core of the multicore processor

S22
Determine a first property of the first core
y
S24
\| Determine that the first core is at least partially inoperative

’

526 | Based on the determination that the first core is at least partially inoperative, identify a third
core of the multicore processor, where the third core has the first property

.

Generate a second request that includes the translated core affinity bitmask, the translated
core affinity bitmask may identify the second core and the third core so that the first task is

executed on the third core and the second task is executed on the second core

S28

Fig. 6B

US 9,311,153 B2

Sheet 8 of 9

Apr. 12,2016

U.S. Patent

— e, — — —— —_— —_— —_——

_ r—— 7 -
| wnipaw _ | wnipaw “ _ wn|paw s|qepesal _

suonesIuNWWod AT o|qeplodaly ___ - .
CUNONNUMOV 017, | SRRV gy ooV gy,

*9109 YMINOJ ST} PUL 9109 PIIY) oY) SIYNUSPI Nseuniq AUy 9109

PaIB[SULL S} UISISYM YSBUNI] AJUJJe 9100 PIJE[SULK] SU) SOpNoul 18yl 3senbai puooss e Sureisusd 10 SUOIONISUL 910U 10 SUQ)
10 $10850001d

23001 NWI 87} JO 210 YUNOJ € pue 2109 pAY) & Surdymuept ‘Aruiye 1811y oq1 uo ed Ul 1589] 18 paseq J0J SUONONIISUI 310U IO SU)
JO ‘2100 PUOIDS Y} PUEL 210 ISIIJ OY) UAMIS] AITUITE 1511J € SUTUTIS)Sp IOF SUOTIONISUI 910U IO SU()

10 $10850501d 2100T)INTI S1J) JO 9100 PUOIIS B PUR OIOD ISIIJ € 1SBI[

1B SINUIPI I8y YSeuniq AIUIJe 2109 © SIPNOUI 1sonbax 1811y oY) uraioym “1sanbai 1511y © SUIA10021 JOJ SUOTIONISUL SIOW 10 U
10 ‘0ss3001d s109M NI B JOJ JSBUNIQ AJULJR 5100 paje[suen € Sunersusd oy poylsur € JOJ SUONONIISUl 310U J0 SUQ)

JO ou0 I5BO] 1Y

0.

‘wnipaw Buueaq |eubis v zZo7

Jonpoud weiboid Jeyndwos v 9oz

US 9,311,153 B2

Sheet 9 of 9

Apr. 12,2016

U.S. Patent

(z989)
(s)3031A3Q

(

ONLLNAWOD N
HIHLO

-

(¥98)

S)1H0d [) €I TIOHLNOD

"WWOD

(098)

MHOMLIN

(91Q) SADIAI(J NOILVOINNWINOD

(#£8) sNg 30V4UILN| IOVHOLS

-~ > - > s >
(0g8) (gaH “69) (ana/ao “6e)
MITIOHUINOD (g€8) FOVHOLS (9€g8) FIOVHOLS
30V4H3LIN|/SNYG ITGVAOWIH-NON FIEVAONIY

Lo

(8s9)

(s)Luod

o

(958)
AHV HITIOHLNOD
FOVAHIALN]

13T7Ivedvd

(p58)
AHV HIATTIOULNOD
FOVAHILNI

T3S

L

(zs9)

(s)Lyod

NI

(058) LINO

{) oNIssao0oNd

olany

(878) LINOY

K —) onIssaooud

SOIHAVYD)

{¢18) S30INI(J INdinO

(0¥8) sng FOV4UTLIN]

-

AL

(2€£9) S30IA3A IOVHOLS

(808) sng Adowan
oLy -3

-

(818)
HIATTIOHLNOD AHOWIN

17

(918)
SHILSIODTY

— (avig)
ave dsa/nd4nTv
FHOD HOSSAO0Yd

(vy18)

gl dsa/ndaNv
JH0D "H0SS300Hd

(8zg)
v.ivQg
NOILYISNYY |
MSYWLIG
ALINIHAY FHOD

(7¢8) vIvQ AvVED0Hd

(9z8)
WHLIHODTY
NOILVISNVY |
MeVWLIg
ALINIAAY 3HOD

Z28) NOILVOIiddy

Z18) (oL8)
IHOVD IHOVD (0z9)
Z 1EATT 1 13A37 WILSAS ONILYHILO
dsa omygr

+08) J0SSIO0NEd

NWYH/NOY

{908) AHOWIWN WALSAS

US 9,311,153 B2

1
CORE AFFINITY BITMASK TRANSLATION

This application is a U.S. National Stage filing under 35
U.S.C. §371 of International Application No. PCT/US13/
41196 filed May 15, 2013. The disclosure of the International
Application is hereby incorporated by reference in its
entirety.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this application
and are not admitted to be prior art by inclusion in this section.

In multicore architectures, multiple processor cores may
be included in a single integrated circuit die or on multiple
integrated circuit dies that are arranged in a single chip pack-
age. Instructions may be received and executed by one or
more cores in the chip. Memory may be shared by two or
more processor cores in the chip.

SUMMARY

Insome examples, methods for generating a translated core
affinity bitmask for a multicore processor are generally
described. The methods may include, by a dispatcher, receiv-
ing a first request. The first request may include a core affinity
bitmask that identifies at least a first core and a second core of
the multicore processor. The methods may include determin-
ing a first affinity between the first core and the second core.
The methods may include, based at least in part on the first
affinity, identifying a third core and a fourth core of the
multicore processor. The methods may include generating a
second request that includes the translated core affinity bit-
mask. The translated core affinity bitmask may identify the
third core and the fourth core.

In some examples, devices effective to generate a trans-
lated core affinity bitmask of a multicore processor are gen-
erally described. The devices may include a memory and a
device processor configured in communication with the
memory. The device processor may be effective to receive a
first request. The first request may include a core affinity
bitmask. The core affinity bitmask may identify at least a first
core and a second core of the multicore processor. The device
processor may be effective to determine a first affinity
between the first core and the second core. The device pro-
cessor may be effective to, based at least in part on the first
affinity, identify a third core and a fourth core of the multicore
processor. The device processor may be effective to generate
a second request that includes the translated core affinity
bitmask. The translated core affinity bitmask may identify the
third core and the fourth core.

In some examples, multicore processors are generally
described. The multicore processors may include a first core,
a second core, a third core, a fourth core, a memory, and a
dispatcher. The memory may be configured in communica-
tion with the first core, the second core, the third core, and the
fourth core. The dispatcher may be configured in communi-
cation with the first core, the second core, the third core, the
fourth core, and the memory. The dispatcher may be effective
to receive a first request. The first request may include a core
affinity bitmask. The core affinity bitmask may identify at
least the first core and the second core of the multicore pro-
cessor. The dispatcher may be effective to determine that the
first core is at least partially inoperative. The dispatcher may
be effective to determine a first affinity between the first core
and the second core. The dispatcher may be effective to, based
at least in part on the first affinity, identify a third core and a

10

15

20

25

30

35

40

45

50

55

60

65

2

fourth core of the multicore processor. The dispatcher may be
effective to generate a second request that includes the trans-
lated core affinity bitmask. The translated core affinity bit-
mask may identify the third core and the fourth core.

In some examples, methods for generating a translated core
affinity bitmask for a multicore processor are generally
described. The methods may include, by a dispatcher, receiv-
ing a first request to execute a first task on a first core and a
second task on a second core. The first request may include a
core affinity bitmask that identifies at least the first core and
the second core of the multicore processor. The methods may
include determining a first property of the first core. The
methods may include determining that the first core is at least
partially inoperative. The methods may include, based on the
determination that the first core is at least partially inopera-
tive, identifying a third core of the multicore processor, where
the third core has the first property. The methods may include
generating a second request that includes the translated core
affinity bitmask. The translated core affinity bitmask may
identify the second core and the third core so that the first task
is executed on the third core and the second task is executed
on the second core.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of this disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

FIG. 1 illustrates an example system that can be utilized to
implement core affinity bitmask translation;

FIG. 2 illustrates the example system that can be utilized to
implement the core affinity bitmask translation of FIG. 1 with
additional details relating to a core affinity classification
table;

FIG. 3 illustrates the example system that can be utilized to
implement the core affinity bitmask translation of FIG. 1 with
additional details relating to a core affinity classification
table;

FIG. 4 illustrates the example system that can be utilized to
implement the core affinity bitmask translation of FIG. 1 with
additional details relating to a core property table;

FIG. 5 illustrates the example system that can be utilized to
implement the core affinity bitmask translation of FIG. 1 with
additional details relating to a core property table;

FIG. 6A depicts a flow diagram for an example process for
implementing core affinity bitmask translation;

FIG. 6B depicts a flow diagram for an example process for
implementing core affinity bitmask translation;

FIG. 7 illustrates a computer program product that can be
utilized to implement core affinity bitmask translation; and

FIG. 8 is a block diagram illustrating an example comput-
ing device that is arranged to implement core affinity bitmask
translation, all arranged according to at least some embodi-
ments described herein.

US 9,311,153 B2

3
DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

This disclosure is generally drawn, inter alia, to methods,
apparatus, systems, devices, and computer program products
related to core affinity bitmask translation.

Briefly stated, technologies are generally described for
systems methods, and devices related to core affinity bitmask
translation. An example system may include first, second,
third and fourth cores, and a dispatcher. The dispatcher may
be configured to receive a first request where the first request
includes a core affinity bitmask and instructions. The core
affinity bitmask can identify at least the first core and the
second core. The dispatcher may be configured to determine
a first affinity between the first core and the second core. The
dispatcher may then identify the third core and the fourth core
as having similar affinity to achieve a substantially similar
performance. The dispatcher may also be configured to gen-
erate a second request that includes a translated core affinity
bitmask. The translated core affinity bitmask may be effective
to identify the third core and the fourth core as appropriate
cores to execute the instructions.

FIG. 1 illustrates an example system 100 that can be uti-
lized to implement core affinity bitmask translation in accor-
dance with at least some embodiments described herein. An
example system 100 may include two or more processor cores
104,106, 108,110, 112, 114, 116 and/or 118 of a multicore
processor 102. Cores 104,106,108,110,112,114, 116 and/or
118 may be capable of operating at the same or different
operating frequencies. Cores 104, 106, 108, 110, 112, 114,
116 and/or 118 may be capable of executing instructions from
the same instruction set or from different instruction sets.
Some of the cores may be configured in communication with
a memory 120 or a memory 122. In some examples, memo-
ries 120, 122 may be cache memory or random access
memory suchas DDR (double data rate) memory. At least one
of cores 104, 106, 108, 110, 112, 114, 116 and/or 118 may
become at least partially inoperative as is illustrated by the
“X” in core 108 in FIG. 1. For example, core 108 may have
stopped operating or stopped operating within a requested
specification such as operating at a lower frequency or at a
reduced communication speed then specified. For example,
core 108 may become inoperative because of an overheating
(as may occur with a thermal hotspot), a hardware error, a
fabrication error, an inability to operate at a target voltage, a
latchup, or other cause. As described in more detail below, a
dispatcher 128 may be configured to receive an initial request
134 from a source of initial request 151. Dispatcher 128 may
comprise a device and may include a device processor, and
may include and/or be in communication with, a memory
with instructions. Initial request 134 may include one or more
instructions 130 and a core affinity bitmask 132. Instructions
130 may be instructions to be processed by multicore proces-
sor 102. Core affinity bitmask 132 may identify certain cores

10

15

20

25

30

35

40

45

50

55

60

65

4

on multicore processor 102 to execute instructions 130. In
one example, a software program that generates instructions
130 may also generate core affinity bitmask 132, where the
software program requests that instruction 130 be executed
on certain cores identified by the core affinity bitmask 132.
Example software programs may include multicore aware
high performance software, such as database software, com-
putational analysis software, streaming software, among oth-
ers. Core affinity bitmask 132 may identify one or more cores.
Theidentified cores may have a particular affinity that may be
determined as is described in more detail below. An example
affinity may be, for example, cores with shared operating
characteristics or cores within a certain proximity of a
memory. An example core affinity bitmask 132 may be imple-
mented, for example, as a set of bits. The set of bits may be a
binary set of bits, a set of compressed bits, a set of encoded
bits, or some other variety of bits depending on the desired
implementation. In one example, a first bit value in the bits
may indicate that a particular core is requested by instructions
130 and a second bit value in the bits may indicate that the
particular core is not requested by instructions 130.

Dispatcher 128 may be implemented as part of multicore
processor 102 or separate from multicore processor 102. Dis-
patcher 128 may be implemented using hardware, software,
or a combination of hardware and software. Dispatcher 128
may be configured to receive initial request 134 and generate
a translated request 136. Translated request 136 may include
instructions 130 and may further include a translated core
affinity bitmask 126. Instructions 130 may be executed on
cores identified in translated core affinity bitmask 126.

Translated core affinity bitmask 126 may identify a group
of cores on multicore processor 102. The group of cores in
translated core affinity bitmask 126 may be same or different
from the group of cores in core affinity bitmask 132. A mes-
sage 150 may be generated by dispatcher 128. Message 150
may identify the cores in translated core affinity bitmask 126.
Message 150 may be sent to source of initial request 151
when the translated core affinity bitmask 126 includes a group
of'cores different from the group of cores identified in the core
affinity bitmask 132. Message 150 may be used to identify
additional cores in examples when cores in translated core
affinity bitmask 126 are insufficient to provide a requested
performance level for instructions 130.

FIGS. 2 and 3 illustrate example systems that can be uti-
lized to implement core affinity bitmask translation of FIG. 1
with additional details relating to a core affinity classification
table, arranged in accordance with at least some embodiments
described herein. Those components in FIGS. 2 and 3 that are
labeled identically to components of FIG. 1 will not be
described again for the purposes of clarity. FIG. 2 illustrates
dispatcher 128 inside or as part of multicore processor 102.
FIG. 3 illustrates dispatcher 128 outside multicore processor
102. Aside from the placement of dispatcher 128, FIGS. 2 and
3 are otherwise the same and discussion below will refer to
either figure except where the location of dispatcher 128 is
specified.

In some examples, dispatcher 128 may be implemented in
hardware in multicore processor 102. In other examples, dis-
patcher 128 may be implemented on another processor core
237 on multicore processor 102 as shown in the example in
FIG. 2. In other examples, dispatcher 128 may be imple-
mented in software such as by an operating system (“OS”)
338 as shown in the example in FIG. 3. Dispatcher 128 may be
implemented as hardware (“HW”) 142 outside of multicore
processor 102 such as in a hypervisor as shown in the example
in FIG. 3. With reference to FIG. 2, a redundant core 248 may
be disposed in multicore processor 102. Redundant core 248

US 9,311,153 B2

5

may be used in examples when a core, such as core 108,
becomes at least partially inoperative—as is described in
more detail below.

A core affinity classification table 244 may be stored in a
memory or hardware configured to be in communication with
dispatcher 128. Core affinity classification table 244 may be
located in multicore processor 102 or outside of multicore
processor 102. Core affinity translation table 244 may be
stored in a memory, as hardware such as a part of logic
hardware, in a hypervisor, or in operating system 338 (FIG.
3). Core affinity classification table 244 may be for example,
a finite state machine.

Core affinity classification table 244 may identify groups
of cores and one or more affinities between or among cores in
the respective groups. For example, table 244 may indicate
that a particular group of cores have an affinity where the
cores share a common DDR3 memory interface. In another
example, table 244 may indicate that a particular group of
cores have an affinity where the cores share a cache and a
network port. In examples where core affinity bitmask 132
identifies the particular group, core affinity classification
table 244 may indicate that the corresponding affinity
between or among cores in the particular group is an affinity
with a common DDR3 memory interface. In another
example, if two physically adjacent cores are requested in
core affinity bitmask 132, then the identified affinity between
the cores may be that the cores share an affinity to a com-
monly shared cache. In another example, if core affinity bit-
mask 132 identifies a group of cores associated with a shared
network port, then the cores share an affinity to a commonly
shared network port. In various examples, the affinity may
indicate a shared memory bus, or a common level of cache,
shared accelerator, etc. In some additional examples, multiple
affinities among a group of cores may be identified.

Cores of multicore processor 102 may be identified by
physical core identification numbers. Further, cores of mul-
ticore processor 102 may also be identified by logical core
identification numbers. In some examples, multicore proces-
sor 102 may provide the logical identification numbers to a
hypervisor or an operating system under execution on system
100. A correspondence between logical core identification
numbers and physical cores (as identified by physical core
identification numbers) may be stored in a bitmask map 246.
Bitmask map 246 may be stored in dispatcher 128 or else-
where on multicore processor 102 such as being set at a
factory during chip test, set during a power on test, or at
another time during active functions. Logical core identifica-
tion numbers may correspond to logical representations of
physical cores. Each physical core identification number may
correspond to a core of multicore processor 102. When a
physical core becomes at least partially inoperative, bitmask
map 246 may map the corresponding logical core identifica-
tion number to a different physical core identification number
corresponding to another physical core of multicore proces-
sor 102. For example, if core 108 is inoperative, logical iden-
tification number 108 may be mapped to physical core iden-
tification number 110 corresponding to core 110 of multicore
processor 102. As is explained in more detail below, bitmask
map 246 may be used to indicate when cores have become at
least partially inoperative. Bitmask map 246 may be located
in multicore processor 102 or outside of multicore processor
102. For example, a piece of hardware external to multicore
processor 102 may store bitmask map 246 for a group of
processors.

In an example, dispatcher 128 may receive initial request
134. Initial request 134 may include core affinity bitmask
132. Core affinity bitmask 132 may indicate that multicore

40

45

6

processor 102 should execute instructions 130 on a particular
set of cores. Core affinity bitmask 132 may include logical
identification numbers for the particular set of cores. Dis-
patcher 128 may process initial request 134 by analyzing
bitmask map 246, and identifying physical cores that corre-
spond to the logical core identification numbers in core affin-
ity bitmask 132.

In an example, core affinity bitmask 132 may include the
logical identification number corresponding to core 110. Dis-
patcher 128 may analyze bitmask map 246 to determine that
logical core identification number 110 is mapped to physical
core identification number 110. In another example, bitmask
map 246 may indicate that logical core identification number
110 is mapped to a different physical core identification num-
ber.

When all cores in multicore processor 102 are operative, a
default bitmask map 246 may include a map that relates
identification numbers associated with logical cores to the
same identification numbers associated with physical cores
(e.g.logical core 108 may be mapped to physical core 108). In
examples when core 108 is at least partially inoperative,
bitmask map 246 may provide a map that is different from a
default bitmask map to exclude the inoperative core. For
example, logical core 108 may be mapped to physical core
110—as is shown in the example in FIGS. 2 and 3.

In the example bitmask map shown in FIGS. 2 and 3, core
108 is indicated as being at least partially inoperative as
illustrated by an “X”. Bitmask map 246 may include a map
that associates (or maps) the identifications of logical cores to
the identifications of physical cores so as to prevent use of the
partially inoperative core. In one example, bitmask map 246
may provide a mapping of logical to physical cores that is
unrelated to an affinity of cores in multicore processor 102.
For example, bitmask map 246 may map an identification of
redundant core 248 to an identification of another logical core
and map an identification of partially inoperative core 108 to
an identification of an unused logical core.

In an example, dispatcher 128 may receive an initial
request 134 that includes a core affinity bitmask 132. Dis-
patcher 128 may analyze bitmask map 246 to determine
whether bitmask map 246 is different from a default bitmask
map. If the bitmask map is different from the default bitmask
map, the difference may indicate that one of the cores in
multicore processor 102 is partially inoperative.

In examples where the bitmask map is different from the
default bitmask map, dispatcher 128 may determine that a
core may be at least partially inoperative. Dispatcher 128 may
analyze bitmask map 246 to identify the at least partially
inoperative core. Dispatcher 128 may determine whether the
partially inoperative core is requested in core affinity bitmask
132. In an example, if the at least partially inoperative core is
not requested in core affinity bitmask 132, then translated
core affinity bitmask 126 may identify the same physical
cores as core affinity bitmask 132 because there may be no
defective core to map around. In this example, where the at
least partially inoperative core is not requested in core affinity
bitmask map 132, cores identified in core affinity bitmask 132
may still be identified in translated core affinity bitmask 126
even though one of the cores in multicore processor 102 is at
least partially inoperative.

In an example, if physical core 108 is inoperative, bitmask
map 246 may shift a mapping of logical core identification
numbers to physical core identification numbers. In the
example shown in FIGS. 2 and 3, as a result of the shift,
logical core identification number 108 is mapped to physical
core identification number 110, and logical core identifica-
tion number 110 is mapped to physical core identification

US 9,311,153 B2

7

number 112. In examples where physical core 108 is not
requested in core affinity bitmask 132, mapping of logical
core identification numbers to different physical core identi-
fication numbers (e.g. logical core 108 being mapped to
physical core 110) may result in instructions being processed
by physical cores without a requested affinity. In response to
a determination that physical core 108 is not requested in core
affinity bitmask 132, dispatcher 128 may modify core affinity
bitmask 132 or modify a result of an analysis of bitmask map
246, so that translated core affinity bitmask 126 identifies the
same physical cores as core affinity bitmask 132.

In examples where the at least partially inoperative core is
identified in core affinity bitmask 132, dispatcher 128 may
analyze core affinity classification table 244. Dispatcher 128
may analyze core affinity classification table 244 based on
core affinity bitmask 132 to determine a first affinity of cores
identified in core affinity bitmask 132. In examples where the
first affinity is determined, dispatcher 128 may analyze core
affinity translation table 244 to identify another group of
available cores with substantially the same affinity as the first
affinity. In some examples, if more than one affinity for cores
in core affinity bitmask 132 is identified, dispatcher 128 may
analyze core affinity translation table 244 to identify another
group of available cores with as many of the same affinities as
is possible. In some examples, if more than one affinity for
cores in core affinity bitmask 132 is identified, dispatcher 128
may analyze core affinity translation table 244 to identify
another group of available cores that have the same affinities
in a priority order of affinities. In one example, if the identi-
fied affinities are cache affinity and memory affinity, dis-
patcher 128 may identity another group of available cores that
have both cache affinity and memory affinity. If no such group
of cores is available, dispatcher 128 may choose a group of
available cores that have cache affinity. In examples where the
affinity for cores in core affinity bitmask 132 is not deter-
mined, or no group of cores with the determined affinity are
available, dispatcher 128 may use bitmask map 246 to gen-
erate translated core affinity bitmask 126 such that translated
core affinity bitmask 126 does not identify an inoperative
core.

In an example, core affinity bitmask 132 may identify cores
104 and 106. Dispatcher 128 may analyze bitmask map 246
and determine that both physical cores 104 and 106 are func-
tional. Dispatcher 128 may then generate a translated core
affinity bitmask 126 that may identify cores 104 and 106.

In an example, core affinity bitmask 132 may identify cores
108 and 110. Dispatcher 128 may analyze bitmask map 246
and determine that physical core 108 is at least partially
inoperative. Dispatcher 128 may analyze core affinity classi-
fication table 244 to determine an affinity of cores 108 and
110. In the example, core affinity classification table 244 may
indicate that the group of cores 108 and 110 has an affinity
that the cores share the same cache. Dispatcher 128 may
analyze core affinity classification table 244 to identify
another group of cores with the same affinity—that of sharing
the same cache. In the example, dispatcher 128 may identify
group of cores 104 and 106 as having the same affinity.
Dispatcher 128 may then generate translated core affinity
bitmask 126 that may identify physical cores 104 and 106.
Dispatcher 128 may generate multiple different translated
core affinity bitmasks and select one of the generated trans-
lated core affinity bitmasks based on an availability of the
cores.

FIGS. 4 and 5 illustrate example systems that can be uti-
lized to implement core affinity bitmask translation of FIG. 1
with additional details relating to a core affinity property
table, arranged in accordance with at least some embodiments

40

45

50

8

described herein. Those components in FIGS. 4 and 5 that are
labeled identically to components of FIG. 1, 2 or 3 will not be
described again for the purposes of clarity. FIG. 4 illustrates
dispatcher 128 inside or as part of multicore processor 102.
FIG. 5 illustrates dispatcher 128 outside multicore processor
102. Aside from the placement of dispatcher 128, FIGS. 4 and
5 are otherwise the same and discussion below will refer to
either figure except where the location of dispatcher 128 is
specified.

A core property table 450 may be stored in a memory or
hardware configured to be in communication with dispatcher
128. Core property table 450 may be located in multicore
processor 102 or outside of multicore processor 102. Core
property table 450 may be stored in a memory, as hardware
such as a part of logic hardware, in a hypervisor, or in oper-
ating system 338 (FIG. 5). Core property table 450 may be for
example, a finite state machine.

Core property table 250 may identify cores and one or more
properties of the respective cores. For example, core property
table 450 may indicate that a particular core has a property
where the core has a particular amount of RAM or a particular
processor speed. In another example, core property table 450
may identify cores with equivalent properties. For example,
table 450 may indicate that cores 104 and 106 are equivalent
because cores 104 and 106 have the same or substantially the
same properties. In examples where core affinity bitmask 132
identifies a particular core, core property table 450 may indi-
cate a corresponding property of the core. In various
examples, the property may indicate access to a memory bus,
a size of cache, RAM, other memory, processor speed, access
to an accelerator, etc.

In an example, dispatcher 128 may receive initial request
134. For example, initial request 134 may indicate that a first
task should be executed on a first core and second task should
be executed on a second core. Initial request 134 may include
core affinity bitmask 132. Core affinity bitmask 132 may
indicate that multicore processor 102 should execute instruc-
tions 130 on a particular set of cores. Core affinity bitmask
132 may include logical identification numbers for the par-
ticular set of cores. Dispatcher 128 may process initial request
134 by analyzing bitmask map 246, and identifying physical
cores that correspond to the logical core identification num-
bers in core affinity bitmask 132.

In an example, dispatcher 128 may receive an initial
request 134 that includes a core affinity bitmask 132. Dis-
patcher 128 may analyze bitmask map 246 to determine
whether bitmask map 246 is different from a default bitmask
map. If the bitmask map is different from the default bitmask
map, the difference may indicate that one of the cores in
multicore processor 102 is partially inoperative.

In examples where the bitmask map is different from the
default bitmask map, dispatcher 128 may determine that a
core may be at least partially inoperative. Dispatcher 128 may
analyze bitmask map 246 to identify the at least partially
inoperative core. Dispatcher 128 may determine whether the
partially inoperative core is requested in core affinity bitmask
132. In an example, if the at least partially inoperative core is
not requested in core affinity bitmask 132, then translated
core affinity bitmask 126 may identify the same physical
cores as core affinity bitmask 132 because there may be no
defective core to map around. In this example, where the at
least partially inoperative core is not requested in core affinity
bitmask map 132, cores identified in core affinity bitmask 132
may still be identified in translated core affinity bitmask 126
even though one of the cores in multicore processor 102 is at
least partially inoperative.

US 9,311,153 B2

9

In an example, if physical core 108 is inoperative, bitmask
map 246 may shift a mapping of logical core identification
numbers to physical core identification numbers. In the
example shown in FIGS. 4 and 5, as a result of the shift,
logical core identification number 108 is mapped to physical
core identification number 110, and logical core identifica-
tion number 110 is mapped to physical core identification
number 112. In examples where physical core 108 is not
requested in core affinity bitmask 132, mapping of logical
core identification numbers to different physical core identi-
fication numbers (e.g. logical core 108 being mapped to
physical core 110) may result in instructions being processed
by physical cores without a requested affinity. In response to
a determination that physical core 108 is not requested in core
affinity bitmask 132, dispatcher 128 may modify core affinity
bitmask 132 or modify a result of an analysis of bitmask map
246, so that translated core affinity bitmask 126 identifies the
same physical cores as core affinity bitmask 132.

In examples where the at least partially inoperative core is
identified in core affinity bitmask 132, dispatcher 128 may
analyze core property table 250. Dispatcher 128 may analyze
core affinity classification table 250 based on core affinity
bitmask 132 to determine respective properties of cores iden-
tified in core affinity bitmask 132. In examples where the
properties are determined, dispatcher 128 may analyze core
property table 250 to identify other cores with substantially
the same properties. In one example, if the identified property
relates to cache size, dispatcher 128 may identify another core
that has substantially the same cache size as the requested
core in core affinity bitmask 132. If no such core is available,
dispatcher 128 may choose a core with properties closest to
the requested core.

In an example, request 134 may identify cores 108 and 110
to execute first and second tasks respectively. Dispatcher 128
may analyze bitmask map 246 and determine that physical
core 108 is at least partially inoperative. Dispatcher 128 may
analyze core property table 250 to determine a property of
core 108. In the example, core property table 250 may indi-
cate that core 108 has a property relating to RAM size. Dis-
patcher 128 may analyze core property table 250 to identify
another core with the same or substantially the same prop-
erty—that of RAM size. In the example, dispatcher 128 may
identify cores 108 and 106 as having the same or substantially
the same property. Dispatcher 128 may then generate trans-
lated core affinity bitmask 126 so that the second task is
assigned to core 110 and the first task is assigned to core 106.

Among other possible benefits, a system arranged in accor-
dance with the present disclosure may allow instructions to be
executed by cores with a specified affinity or an approxima-
tion of the specified affinity, even if one or more cores is at
least partially inoperative. An affinity of identified cores may
be determined and instructions may be sent to a group of cores
with the same affinity. More predictable performance for
multicore aware software may be achieved in part because
instructions requesting a bitmask with cores of a particular
affinity may be executed with the requested affinity even in
examples when a core is partially inoperative or unavailable.
Inoperative cores may be inoperative due to permanent failure
or transient failure (e.g. a thermal hotspot). Unavailable cores
may be busy processing other tasks.

FIG. 6A depicts a flow diagram for an example process for
implementing core affinity bitmask translation arranged in
accordance with at least some embodiments described herein.
In some examples, the process in FIG. 6A could be imple-
mented using system 100 discussed above to implement a
method for generating a translated core affinity bitmask for a
multicore processor by a dispatcher.

10

15

20

25

30

35

40

45

50

55

60

65

10

An example process may include one or more operations,
actions, or functions as illustrated by one or more of blocks
S2, S4, S6 and/or S8. Although illustrated as discrete blocks,
various blocks may be divided into additional blocks, com-
bined into fewer blocks, or eliminated, depending on the
desired implementation.

Processing may begin at block S2, “Receive a first request,
where the first request may include a core affinity bitmask that
identifies at least a first core and a second core of the multi-
core processor.” In some examples, at block S2, a dispatcher
may receive a request that includes a core affinity bitmask.
The core affinity bitmask may identify a first and second core
of'a multicore processor.

Processing may continue from block S2 to block S4,
“Determine a first affinity between the first core and the
second core.”” At block S4, the dispatcher may determine an
affinity between the first core and the second core. The dis-
patcher may determine the first affinity by determining that
the first and second core are part of a group of cores in the core
affinity translation table where the table includes groups of
cores with a corresponding affinity.

Processing may also continue from block S4 to block S6,
“Based at least in part on the first affinity, identify a third core
and a fourth core of the multicore processor.”” At block S6, the
dispatcher, based on the first affinity, may identify a third core
and a fourth core of the multicore processor. Identifying the
third and fourth core may include determining a second affin-
ity between the third and the fourth core that is substantially
the same as the first affinity. In some examples, identifying the
third and fourth core may include determining a second affin-
ity between the third and the fourth core that is not substan-
tially the same as the first affinity. The dispatcher may identify
the third core and fourth core in response to a determination
that the first core is at least partially inoperative by determin-
ing that a current bitmask map of the processor is different
from a default bitmask map of the processor.

Processing may continue from block S6 to block S8, “Gen-
erate a second request that includes the translated core affinity
bitmask, where the translated core affinity bitmask identifies
the third core and the fourth core.” At block S8, the dispatcher
may generate a second request that includes the translated
core affinity bitmask. The translated core affinity bitmask
may identify the third core and the fourth core.

FIG. 6B depicts a flow diagram for an example process for
implementing core affinity bitmask translation arranged in
accordance with at least some embodiments described herein.
In some examples, the process in FIG. 6B could be imple-
mented using system 100 discussed above to implement a
method for generating a translated core affinity bitmask for a
multicore processor by a dispatcher.

An example process may include one or more operations,
actions, or functions as illustrated by one or more of blocks
S20, S22, S24, S26 and/or S28. Although illustrated as dis-
crete blocks, various blocks may be divided into additional
blocks, combined into fewer blocks, or eliminated, depending
on the desired implementation.

Processing may begin at block S20, “Receive a first request
to execute a first task on a first core and a second task on a
second core, the first request may include a core affinity
bitmask that identifies at least the first core and the second
core of the multicore processor.”” At block S20, a dispatcher
may receive a first request. The first request may be a request
to execute a first task on a first core and a second task on a
second core. The request may include a core affinity bitmask
that identifies at least the first core and the second core of a
multicore processor.

US 9,311,153 B2

11

Processing may continue from block S20 to block S22,
“Determine a first property of the first core.”” At block S22, the
dispatcher may determine a first property of the first core. The
dispatcher may determine the first property by analyzing a
core property table.

Processing may continue from block S22 to block S24,
“Determine that the first core is at least partially inoperative.”
The dispatcher may determine that the first core is at least
partially inoperative by determining that a current bitmask
map of the processor is different from a default bitmask map
of the processor.

Processing may continue from block S24 to block S26,
“Based on the determination that the first core is at least
partially inoperative, identify a third core of the multicore
processor, where the third core has the first property.” At
block S26, the dispatcher may identify athird core that has the
first property.

Processing may continue from block S26 to block S28,
“Generate a second request that includes the translated core
affinity bitmask, the translated core affinity bitmask may
identify the second core and the third core so that the first task
is executed on the third core and the second task is executed
on the second core.” At block S28, the dispatcher may gen-
erate a second request that includes the translated core affinity
bitmask. The translated core affinity bitmask may identify the
second core and the third core. The translated core affinity
bitmask and second request may be used so that the first task
is executed on the third core and the second task is executed
on the second core.

FIG. 7 illustrates an example computer program product
700 that can be utilized to implement core affinity bitmask
translation arranged in accordance with at least some embodi-
ments described herein. Computer program product 700 may
include a signal bearing medium 702. Signal bearing medium
702 may include one or more instructions 704 that, when
executed by, for example, a processor, may provide the func-
tionality described above with respect to FIGS. 1-6B. Thus,
for example, referring to system 100, dispatcher 128 may
undertake one or more of the blocks shown in FIG. 7 in
response to instructions 704 conveyed to the system 100 by
signal bearing medium 702.

In some implementations, signal bearing medium 702 may
encompass a computer-readable medium 706, such as, but not
limited to, a hard disk drive, a Compact Disc (CD), a Digital
Video Disk (DVD), a digital tape, memory, etc. In some
implementations, signal bearing medium 702 may encom-
pass a recordable medium 708, such as, but not limited to,
memory, read/write (R/W) CDs, R/W DVDs, etc. In some
implementations, signal bearing medium 702 may encom-
pass a communications medium 710, such as, but not limited
to, a digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.). Thus, for example,
computer program product 700 may be conveyed to one or
more modules of the system 100 by an RF signal bearing
medium 702, where the signal bearing medium 702 is con-
veyed by a wireless communications medium 710 (e.g., a
wireless communications medium conforming with the IEEE
802.11 standard).

FIG. 8 is a block diagram illustrating an example comput-
ing device 800 that is arranged to implement core affinity
bitmask translation arranged in accordance with at least some
embodiments described herein. In a very basic configuration
802, computing device 800 typically includes one or more
processors 804 and a system memory 806. A memory bus 808
may be used for communicating between processor 804 and
system memory 806.

10

15

20

25

30

35

40

45

50

55

60

65

12

Depending on the desired configuration, processor 804
may be of any type including but not limited to a micropro-
cessor (UP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 804 may
include dispatcher 128, core affinity translation table 244
and/or bitmask map 246. Processor 804 may include one
more levels of caching, such as a level one cache 810 and a
level two cache 812, two or more processor cores 814A,
814B, etc., and registers 816. Processor cores 814A, 814B
may each include an arithmetic logic unit (ALU), a floating
point unit (FPU), a digital signal processing core (DSP Core),
or any combination thereof. In a homogeneous configuration,
processor cores 814A, 814B may be capable of performing
substantially similar functions (e.g. have the same instruction
set). In a heterogeneous configuration, processor cores 814 A,
814B may be capable of performing different functions (e.g.
have different instruction sets). An example memory control-
ler 818 may also be used with processor 804, or in some
implementations memory controller 818 may be an internal
part of processor 804.

Depending on the desired configuration, system memory
806 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof. Sys-
tem memory 806 may include an operating system 820, one
or more applications 822, and program data 824. Application
822 may include a core affinity bitmask translation algorithm
826 that is arranged to perform the functions as described
herein including those described with respect to system 100
of FIGS. 1-5. Program data 824 may include core affinity
bitmask translation data 828 that may be useful to implement
core affinity bitmask translation as is described herein. In
some embodiments, core affinity bitmask translation data 828
may include a bitmask map and/or a core affinity classifica-
tion table. In some embodiments, application 822 may be
arranged to operate with program data 824 on operating sys-
tem 820 such that core affinity bitmask translation algorithm
may be provided. This described basic configuration 802 is
illustrated in FIG. 8 by those components within the inner
dashed line.

Computing device 800 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 802 and any required
devices and interfaces. For example, a bus/interface control-
ler 830 may be used to facilitate communications between
basic configuration 802 and one or more data storage devices
832 via a storage interface bus 834. Data storage devices 832
may be removable storage devices 836, non-removable stor-
age devices 838, or a combination thereof. Examples of
removable storage and non-removable storage devices
include magnetic disk devices such as flexible disk drives and
hard-disk drives (HDD), optical disk drives such as compact
disk (CD) drives or digital versatile disk (DVD) drives, solid
state drives (SSD), and tape drives to name a few. Example
computer storage media may include volatile and non-vola-
tile, removable and non-removable media implemented in
any method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

System memory 806, removable storage devices 836 and
non-removable storage devices 838 are examples of com-
puter storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired

US 9,311,153 B2

13

information and which may be accessed by computing device
800. Any such computer storage media may be part of com-
puting device 800.

Computing device 800 may also include an interface bus
840 for facilitating communication from various interface
devices (e.g., output devices 842, peripheral interfaces 844,
and communication devices 846) to basic configuration 802
via bus/interface controller 830. Example output devices 842
include a graphics processing unit 848 and an audio process-
ing unit 850, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 852. Example peripheral interfaces 844
include a serial interface controller 854 or a parallel interface
controller 856, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 858. An example communication device 846
includes a network controller 860, which may be arranged to
facilitate communications with one or more other computing
devices 862 over a network communication link via one or
more communication ports 864.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

Computing device 800 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 800 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to

20

30

40

45

55

14

the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

Itwill be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may containusage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav-
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” is used,
in general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the art
will recognize that the disclosure is also thereby described in
terms of any individual member or subgroup of members of
the Markush group.

As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be

US 9,311,153 B2

15

readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” “greater than,”
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down into sub-
ranges as discussed above. Finally, as will be understood by
one skilled in the art, a range includes each individual mem-
ber. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2,3, 4, or 5 cells, and so forth.
While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.
What is claimed is:
1. A method to generate a translated core affinity bitmask
for a multicore processor, the method comprising, by a dis-
patcher:
receiving a first request, wherein the first request includes
a core affinity bitmask that identifies at least a first core
and a second core of the multicore processor;

determining that the first core is at least partially inopera-
tive;

in response to determining that the first core is at least

partially inoperative:

determining that the first core and the second core are
both part of a group of cores in a table, wherein the
table includes groups of two or more cores and a
corresponding affinity between or among the cores in
each group;

identifying an affinity corresponding to the group of
cores in the table;

determining that the identified affinity is an affinity
between the first core and the second core;

based at least in part on the affinity, identifying a third
core and a fourth core of the multicore processor;

generating the translated core affinity bitmask in
response to the identification of the third core and the
fourth core, wherein the translated core affinity bit-
mask identifies at least the third core and the fourth
core, and wherein the translated core affinity bitmask
is different from the core affinity bitmask; and

generating a second request that includes the translated
core affinity bitmask.

2. The method of claim 1, wherein the affinity includes a
first affinity, and identifying a third core and a fourth core of
the multicore processor comprises determining a second
affinity between the third core and the fourth core.

3. The method of claim 2, wherein determining the second
affinity between the third core and the fourth core comprises
determining that the second affinity is same as the first affin-
ity.

4. The method of claim 1, wherein determining that the first
core is at least partially inoperative comprises:

determining that a current bitmask map of the multicore

processor is different from a default bitmask map of the
multicore processor.

5. The method of claim 1, wherein identifying the fourth
core of the multicore processor comprises identifying the
fourth core that is different from the second core.

6. The method of claim 1, further comprising sending a
message, wherein the message identifies the third core and the
fourth core.

7. A device effective to generate a translated core affinity
bitmask of a multicore processor, the device comprising:

29 <

10

15

20

25

30

35

40

45

55

60

65

16

a device processor effective to:
receive a first request, wherein the first request includes
a core affinity bitmask, the core affinity bitmask iden-
tifies at least a first core and a second core of the
multicore processor;
determine that the first core is at least partially inopera-
tive;
in response to the determination that the first core is at
least partially inoperative:
determine that the first core and the second core are
both part of a group of cores in a table, wherein the
table includes groups of two or more cores and a
corresponding affinity between or among the cores
in each group;
identify an affinity that corresponds to the group of
cores in the table;
determine that the identified affinity is an affinity
between the first core and the second core;
based at least in part on the affinity, identify a third
core and a fourth core of the multicore processor;
generate the translated core affinity bitmask in
response to the identification of the third core and
the fourth core, wherein the translated core affinity
bitmask identifies at least the third core and the
fourth core, and wherein the translated core affinity
bitmask is different from the core affinity bitmask;
and
generate a second request that includes the translated
core affinity bitmask.

8. The device of claim 7, wherein the device processor
includes a dispatcher.

9. The device of claim 7, further comprising a memory
configured in communication with the device processor,
wherein:

the device processor is effective to analyze a current bit-

mask map stored in the memory to determine that the
first core is at least partially inoperative when the current
bitmask map is different from a default bitmask map of
the multicore processor.

10. The device of claim 7, further comprising a memory
configured in communication with the device processor,
wherein

the table is stored in the memory.

11. The device of claim 7, wherein:

the affinity includes a first affinity;

the device processor is effective to analyze a table to deter-

mine the first affinity between the first core and the
second core, where the table includes groups of two or
more cores and a corresponding affinity between or
among cores in each group; and

the device processor is effective to analyze the table to

determine a second affinity between the third core and
fourth core.

12. The device of claim 7, wherein the fourth core is dif-
ferent from the second core.

13. A multicore processor, comprising:

a first core;

a second core;

a third core;

a fourth core; and

a dispatcher configured in communication with the first

core, the second core, the third core, and the fourth core;
wherein the dispatcher is effective to:
receive a first request, wherein the first request includes
a core affinity bitmask, the core affinity bitmask iden-
tifies at least the first core and the second core of the
multicore processor;

US 9,311,153 B2

17

determine that the first core is at least partially inopera-
tive;
in response to the determination that the first core is at

least partially inoperative:

determine that the first core and the second core are
both part of a group of cores in a table, wherein the
table includes groups of two or more cores and a
corresponding affinity between or among the cores
in each group;

identify an affinity that corresponds to the group of
cores in the table;

determine that the identified affinity is an affinity
between the first core and the second core;

based at least in part on the affinity between the first
core and the second core, identify a third core and a
fourth core of the multicore processor;

generate the translated core affinity bitmask in
response to the identification of the third core and
the fourth core, wherein the translated core affinity
bitmask identifies at least the third core and the
fourth core, and wherein the translated core affinity
bitmask is different from the core affinity bitmask;
and

generate a second request that includes the translated
core affinity bitmask.

14. The multicore processor of claim 13, wherein the first
request and second request include instructions to be
executed by the multicore processor.

15. The multicore processor of claim 13, further compris-
ing a memory configured in communication with the first
core, the second core, the third core, the fourth core, and the
dispatcher, wherein the dispatcher is effective to analyze a
current bitmask map in the memory to determine that the first
core is at least partially inoperative when a current bitmask
map is different from a default bitmask map of the multicore
processor.

16. The multicore processor of claim 13, wherein:

the affinity includes a first affinity;

and

the dispatcher is effective to analyze the table to determine

a second affinity between the third core and fourth core.

20

18

17. The multicore processor of claim 13, wherein the fourth
core is different from the second core.

18. A method to generate a translated core affinity bitmask
for a multicore processor, the method comprising, by a dis-
patcher:

receiving a first request to execute a first task on a first core

and a second task on a second core, wherein the first
request includes a core affinity bitmask that identifies at
least the first core and the second core of the multicore
processor;

determining a property of the first core;
determining that the first core is at least partially inopera-

tive;

in response to determining that the first core is at least

partially inoperative:

determining that the first core and the second core are
both part of a group of cores in a table, wherein the
table includes groups of two or more cores and a
corresponding property between or among the cores
in each group;

identifying a property corresponding to the group of
cores in the table;

based on the determination that the first core is at least
partially inoperative, and based on the identified prop-
erty, identifying a third core of the multicore proces-
sor, wherein the third core has the property;

generating the translated core affinity bitmask in
response to the identification of the third core,
wherein the translated core affinity bitmask identifies
at least the second core and the third core so that the
first task is executed on the third core and the second
task is executed on the second core, and wherein the
translated core affinity bitmask is different from the
core affinity bitmask; and

generating a second request that includes the translated
core affinity bitmask.

19. The method of claim 18, wherein determining that the
first core is at least partially inoperative comprises:
determining that a current bitmask map of the multicore

processor is different from a default bitmask map of the
multicore processor.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,311,153 B2 Page 1of1
APPLICATION NO. 1 14/124569

DATED : April 12, 2016

INVENTOR(S) : Kruglick

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, Item (71), delete “Wilmington (DE)” and insert -- Wilmington, DE (US) --,
therefor.

In the specification
Column 1, Line 2, below “Title”, insert -- CROSS-REFERENCE TO RELATED APPLICATION --,

Column 1, Line 4, delete “§371” and insert -- § 371 --, therefor.

Signed and Sealed this
Fifth Day of July, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

